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ABSTRACT 

   By means of the q-homotopy analysis method (q-HAM), the solution of the K(2,2) equation was obtained 

in this paper. Comparison of q- HAM with the Homotopy analysis method (HAM) and the Homotopy 

perturbation method (HPM) are made, The results reveal that the q-HAM has more accuracy than the 

others. 
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1. INTRODUCTION 

     Nonlinear partial differential equations are known to describe a wide variety of phenomena not 

only in physics, where applications extend over magneto fluid dynamics, water surface gravity 

waves, electromagnetic radiation reactions, and ion acoustic waves in plasma, just to name a few, 

but also in biology and chemistry, and several other fields. 

 

    Several methods have been suggested to solve nonlinear equations. These methods include the 

Homotopy perturbation method (HPM) [11], Luapanov’s artificial small parameter method[21], 

Adomian decomposition method [2,25], variation iterative method [22,28] and so on. Homotopy 

analysis method (HAM), first proposed by Liao in his Ph.D dissertation[18], is an elegant method 

which has proved its effectiveness and efficiency in solving many types of nonlinear equations 

[1,4,5,8-10,23,26,27]. The HAM contains a certain auxiliary parameter , which provides us with 

a simple way to adjust and control the convergence region and rate of convergence of the series 

solution [20]. In 2005 Liao [19] has pointed out that the HPM is only a special case of the HAM 

(The case of ). El-Tawil and Huseen [6] proposed a method namely q-homotopy analysis 

method (q-HAM) which is more general method of  homotopy analysis method (HAM) , The q-

HAM contains an auxiliary parameter  as well as  such that the cases of (q-HAM ;  ) the 

standard homotopy analysis method (HAM) can be reached. The q-HAM has been successfully 

applied to solve many types of nonlinear problems [6, 7, 12-17]. Rosenan and Hyman [24] 

reported a class of partial differential equations 

 

, 
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which is a generalization of the the Korteweg-deVries (KdV) equation.These equations with the 

values of  and  are denoted by  The aim of the present work is to effectively employ 

the q-HAM to establish the solutions for one of these partial differential equations; namely, K(2,2) 

equation which is given by  

 

This equation plays an important role in the research of motion laws of liquid drop and mixed 

flowing matter. Comparison of the present method with the HAM and HPM is also presented in 

this paper. 

2. BASIC IDEA OF Q-HOMOTOPY ANALYSIS METHOD (Q-HAM)  

 Consider the following differential equation 

                                                                                             (1) 

where N is a nonlinear operator,  denotes independent variables,  is a known function  

and  is an unknown function. 

Let us construct the so-called zero-order deformation equation 

            ,      (2) 

where   ,  denotes the so-called embedded parameter ,  is an auxiliary linear 

operator with the property ,   is an auxiliary parameter,  

denotes a non-zero auxiliary function. It is obvious that when  equation (2) 

becomes: 

                                                       (3) 

Respectively. Thus as  increases from 0 to  , the solution  varies from the initial guess 

 to the solution . Having the freedom to choose  , we can 

assume that all of them can be properly chosen so that the solution  of equation (2) exists 

for . 

Expanding  in Taylor series, one has: 

                       ,                                          (4) 

where 



International Journal of Inventions in Engineering & Science Technology                http://www.ijiest.in  

 

(IJIEST) 2015, Vol. No. 1, Jan-Dec                                                 e-ISSN: 2454-9584; p-ISSN: 2454-8111 

 

 8 
 

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING AND SCIENCE 

TECHNOLOGY 

                                                                                       (5) 

Assume that  are so properly chosen such that the series (4) converges at 

  and 

                                             (6) 

 

Defining the vector   

Differentiating equation (2)  times with respect to  and then setting  and finally dividing 

them by  we have the so-called  order deformation equation 

                                         (7) 

where  

                                                 (8) 

and 

                                                                                              (9) 

It should be emphasized that  for  is governed by the linear equation (7) with linear 

boundary conditions that come from the original problem. Due to the existence of the factor   

, more chances for convergence may occur or even much faster convergence can be obtained 

better than the standard HAM.  It should be noted that the cases of  in equation (2), 

standard HAM can be reached. 

3. APPLICATIONS 

Consider the following K(2,2) equation [3] 

                                                                   (10) 

The exact solution of this problem is  

                                                                                                            (11) 

This problem solved by HAM [3]. For q- HAM solution we choose the linear operator  
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                                                                                              (12) 

with the property   , where   is constant. 

 Using initial approximation     , we define a nonlinear operator as  

 

We construct the zero order deformation  equation 

 

We can take   , and the  order deformation equation is  

                                                   (13) 

with the initial conditions for   

                    ,                                                                                        (14) 

where  as define by (9) and 

  

                                                       

Now the solution of equation  (10) for  becomes 

, 

where the constant of integration   is determined by the initial conditions (14). Then, the 

components of the solution using q- HAM are 

  for   

As special case if   and , then we obtain the same result in [3]. 

Now the series solution expression by q- HAM can be written in the form 

                                            (15) 

Equation (15) is an approximate solution to the problem (10) in terms of the convergence 

parameters  . To find the valid region of  , the -curves given by the 10
th

 order q-HAM 
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approximation at different values of  are drawn in figures ). These figures show 

the interval of   at which the value of  is constant at certain values of   . 

We choose the horizontal line parallel to  as a valid region which provides us with a 

simple way to adjust and control the convergence region of the series solution (16). From these 

figures, the valid intersection region of  for the values of  in the curves becomes larger 

as  increase. Figures   show the comparison between  using different 

values of  with the exact solution (11). Figure  shows the comparison between  of 

HAM,  of HPM and  of q-HAM using different values of  with the exact solution (11), 

which indicates that the speed of convergence for q-HAM with   is faster than  (HAM) 

and  (HPM). Figure (12) shows the HPM solution, is different from the exact 

solution given in Figure (15), Figure (13) shows the HAM solution with . However, 

when we increase slightly the range of  to , the shape of the HAM solution, as shown 

in Figure (14), is different from the exact solution  given in Figure (15). On the other hand, the q-

HAM  solution has the same shape as the exact solution even for larger range of t, 

i.e.  as shown in Figure (16). Table (1) shows the comparison between the 10
th

order 

approximations of HAM, HPM (HAM;   and q-HAM at different values of   with the 

exact solution of (10). Therefore, based on these present results, we can say that q-HAM is more 

effective than HAM and HPM. 
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Figure  :  - curve for the HAM (q-HAM;  approximation solution 

 of problem (10) at different values of . 
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Table (1): Comparison between the 10th-order approximations of HPM, HAM and q-HAM 

at different values of   with the exact solution of (10). 

4. CONCLUSION 

    An approximate solution of K(2,2) equation was found by using the q-homotopy analysis 

method (q-HAM).The results show that the convergence region of series solutions obtained by q-

HAM is increasing as q is decreased. The comparison of q-HAM with the HAM and HPM was 

made. It was shown that the convergence of q-HAM is faster than the convergence of HAM and 

HPM. 
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