SOLVING THE K(2,2) EQUATION BY MEANS OF THE Q-HOMOTOPY ANALYSIS METHOD (Q-HAM)

Shaheed N. Huseen
Thi-Qar University, Faculty of Computer Science and Mathematics, Mathematics Department, Thi-Qar, Iraq

ABSTRACT

By means of the q-homotopy analysis method (q-HAM), the solution of the $K(2,2)$ equation was obtained in this paper. Comparison of $q-H A M$ with the Homotopy analysis method (HAM) and the Homotopy perturbation method $(H P M)$ are made, The results reveal that the q-HAM has more accuracy than the others.
Keywords: q-Homotopy Analysis Method (q-HAM), K(2,

1. INTRODUCTION

Nonlinear partial differential equations are known to describe a wide variety of phenomena not only in physics, where applications extend over magneto fluid dynamics, water surface gravity waves, electromagnetic radiation reactions, and ion acoustic waves in plasma, just to name a few, but also in biology and chemistry, and several other fields.

Several methods have been suggested to solve nonlinear equations. These methods include the Homotopy perturbation method (HPM) [11], Luapanov's artificial small parameter method[21], Adomian decomposition method [2,25], variation iterative method [22,28] and so on. Homotopy analysis method (HAM), first proposed by Lao in his Ph.D dissertation[18], is an elegant method which has proved its effectiveness and efficiency in solving many types of nonlinear equations [1,4,5,8-10,23,26,27]. The HAM contains a certain auxiliary parameter h, which provides us with a simple way to adjust and control the convergence region and rate of convergence of the series solution [20]. In 2005 Liao [19] has pointed out that the HPM is only a special case of the HAM (The case of $h=-1$). El-Tawil and Huseen [6] proposed a method namely q-homotopy analysis method (q-HAM) which is more general method of homotopy analysis method (HAM), The qHAM contains an auxiliary parameter n as well as h such that the cases of (q-HAM; $n=1$) the standard homotopy analysis method (HAM) can be reached. The q-HAM has been successfully applied to solve many types of nonlinear problems [6, 7, 12-17]. Rosenan and Hyman [24] reported a class of partial differential equations

$$
u_{t}+\left(u^{m}\right)_{x}+\left(u^{n}\right)_{x x x}=0, m>0,1<n \leq 3
$$

which is a generalization of the the Korteweg-deVries (KdV) equation.These equations with the values of m and n are denoted by $K(m, n)$. The aim of the present work is to effectively employ the q-HAM to establish the solutions for one of these partial differential equations; namely, $\mathrm{K}(2,2)$ equation which is given by
$u_{t}+\left(u^{2}\right)_{x}+\left(u^{2}\right)_{x x x}=0$
This equation plays an important role in the research of motion laws of liquid drop and mixed flowing matter. Comparison of the present method with the HAM and HPM iss also presented in this paper.

2. BASIC IDEA OF Q-HOMOTOPY ANALYSIS METHOD (Q-HAM)

Consider the following differential equation

$$
N[u(x, t)]-f(x, t)=0
$$

where N is a nonlinear operator, (x, t) denotes independent variables, $f(x, t)$ is a known function and $u(x, t)$ is an unknown function.

Let us construct the so-called zero-order deformation equation

$$
\begin{equation*}
(1-n q) L\left[\emptyset(x, t ; q)-y_{0}(x, t)\right]=q h H(x, t)(N[\emptyset(x, t ; q)]-f(x, t)), \tag{2}
\end{equation*}
$$

where $n \geq 1, q \in\left[0, \frac{1}{n}\right]$ denotes the so-called embedded parameter, L is an auxiliary linear operator with the property $\mathbb{L}[f]=0$ whem $f=0, H \neq 0$ is an auxiliary parameter, $H(x, t)$ denotes a non-zero auxiliary function. It is obvious that when $q=0$ and $q=\frac{1}{n}$ equation (2) becomes:

$$
\begin{equation*}
\left.\emptyset(x, t ; 0)=w_{\pi} \gamma_{x,} t\right), \quad \emptyset\left(x, t ; \frac{1}{n}\right)=u(x, t) \tag{3}
\end{equation*}
$$

Respectively. Thus as q increases from 0 to $\frac{1}{n}$, the solution $\emptyset(x, t ; q)$ varies from the initial guess $u_{0}(x, t)$ to the solution $y(x, t)$. Having the freedom to choose $u_{0}(x, t), L, h, H(x, t)$, we can assume that all of them can be properly chosen so that the solution $\emptyset(x, t ; q)$ of equation (2) exists for $q \in\left[0, \frac{1}{n}\right]$.

Expanding $\emptyset(x, t ; q)$ in Taylor series, one has:

$$
\begin{equation*}
\emptyset(x, t ; q)=u_{0}(x, t)+\sum_{m=1}^{+\infty} u_{m}(x, t) q^{m} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{m}(x, t)=\left.\frac{1}{m!} \frac{\partial^{m} \emptyset(x, t ; q)}{\partial q^{m}}\right|_{q=0} \tag{5}
\end{equation*}
$$

Assume that $h, H(x, t), u_{0}(x, t), L$ are so properly chosen such that the series (4) converges at $q=\frac{1}{n}$ and

$$
\begin{equation*}
u(x, t)=\emptyset\left(x, t ; \frac{1}{n}\right)=u_{0}(x, t)+\sum_{m=1}^{+\infty} u_{m}(x, t)\left(\frac{1}{n}\right)^{m} \tag{6}
\end{equation*}
$$

Defining the vector $u_{r}(x, t)=\left\{u_{0}(x, t), u_{1}(x, t), u_{2}(x, t), \ldots, u_{r}(x, t)\right\}^{x}$
Differentiating equation (2) m times with respect to q and then setting $q=$ and finally dividing them by $m!$ we have the so-called $m^{\text {th }}$ order deformation equation

$$
L\left[u_{m}(x, t)-k_{m} u_{m-1}(x, t)\right]=h H(x, t) R_{m}\left(u_{m}-\mathbb{1}(-x, t)\right)
$$

where

$$
\begin{equation*}
R_{m}\left(\vec{u}_{m-1}(x, t)\right)=\left.\frac{1}{(m-1)!} \frac{\partial^{m-1}(N[\phi(x, t ; \infty)]-f(x, t))}{\partial q^{2}-0}\right|_{q=0} \tag{8}
\end{equation*}
$$

and

$$
k_{m}=\left\{\begin{array}{lc}
0 & m \leq 1 \tag{9}\\
n & \text { otherwise }
\end{array}\right.
$$

It should be emphasized that $m_{n}(x, t)$ for m is goyerned by the linear equation (7) with linear boundary conditions that come from the original problem. Due to the existence of the factor $\left(\frac{1}{n}\right)^{m}$, more chances for convergence may occury or even much faster convergence can be obtained better than the standard HAM. It should be noted that the cases of ($n=1$) in equation (2), standard HAM can be reached.

3. APPLICATIONS

Consider the following $K(2,2)$ equation [3]

$$
\begin{equation*}
u_{t}+\left(u^{2}\right)_{x}+\left(u^{2}\right)_{x x x}=0, u(x, 0)=x \tag{10}
\end{equation*}
$$

The exact solution of this problem is

$$
\begin{equation*}
u(x, t)=\frac{x}{1+2 t} \tag{11}
\end{equation*}
$$

This problem solved by HAM [3]. For q- HAM solution we choose the linear operator

$$
\begin{equation*}
L[\emptyset(x, t ; q)]=\frac{\partial \emptyset(x, t ; q)}{\partial t} \tag{12}
\end{equation*}
$$

with the property $L\left[c_{1}\right]=0$, where c_{1} is constant.
Using initial approximation $u_{0}(x, t)=x$, we define a nonlinear operator as
$N[\emptyset(x, t ; q)]=\frac{\partial \emptyset(x, t ; q)}{\partial t}+\frac{\partial\left(\emptyset^{2}(x, t ; q)\right)}{\partial x}+\frac{\partial^{3}\left(\emptyset^{2}(x, t ; q)\right)}{\partial x^{3}}$
We construct the zero order deformation equation
$(1-n q) L\left[\emptyset(x, t ; q)-u_{0}(x, t)\right]=q h H(x, t) N[\emptyset(x, t ; q)]$.
We can take $H(x, t)=1$, and the $m^{\text {th }}$ order deformation equation is

$$
L\left[u_{m}(x, t)-k_{m} u_{m-1}(x, t)\right]=h R_{m}\left(u^{-}-1(x, t)\right)
$$

(13)
with the initial conditions for $m \geq 1$

$$
\begin{equation*}
u_{m}(x, 0)=0 \tag{14}
\end{equation*}
$$

where k_{m} as define by (9) and
$R_{m}\left(u_{m-1}^{*}(x, t)\right)=\frac{\partial u_{m-1}(x, t)}{\partial t}+\frac{\partial}{\partial x} \sum_{i=1}^{m=1} u_{1}(x, t) u_{m-1-i}(x, t)+$

Now the solution of equation (10) for $m \geq 1$ becomes

$$
u_{m}(x, t)=k_{m} u_{m}-r(x, t)+h \int R_{m}\left(u_{m-1}(x, s)\right) d s+c_{1},
$$

where the constant of integration c_{1} is determined by the initial conditions (14). Then, the components of the solution using q- HAM are

$$
u_{m}(x, t)=2 h x t(2 h+h y+n)^{m-1} \text { for } m=1,2,3, \ldots
$$

As special case if $n=1$ and $h=-1$, then we obtain the same result in [3].

Now the series solution expression by q- HAM can be written in the form

$$
\begin{equation*}
u(x ; n ; h) \cong U_{M}(x, t ; n ; h)=\sum_{i=0}^{M} u_{i}(x, t ; n ; h)\left(\frac{1}{n}\right)^{i} \tag{15}
\end{equation*}
$$

Equation (15) is an approximate solution to the problem (10) in terms of the convergence parameters h and n. To find the valid region of h, the h-curves given by the $10^{\text {th }}$ order q-HAM
approximation at different values of x, t and n are drawn in figures $(1-7)$. These figures show the interval of h at which the value of $U_{10}(x, t ; n)$ is constant at certain values of x, t and n. We choose the horizontal line parallel to x-axis (h) as a valid region which provides us with a simple way to adjust and control the convergence region of the series solution (16). From these figures, the valid intersection region of h for the values of x, t and n in the curves becomes larger as n increase. Figures $(8-10)$ show the comparison between U_{5}, U_{7} and U_{10} using different values of n with the exact solution (11). Figure (11) shows the comparison between U_{10} of HAM, U_{10} of HPM and U_{10} of q-HAM using different values of n with the exact solution (11), which indicates that the speed of convergence for q -HAM with $n>1$ is faster than $n=1$ (HAM) and ($n=1 ; h=-1$) (HPM). Figure (12) shows the HPM solution, is different from the exact solution given in Figure (15), Figure (13) shows the HAM solution with $0=t \leq 4.5$. However, when we increase slightly the range of t to $0 \leq t \leq 8.5$, the shape of the HAM solution, as shown in Figure (14), is different from the exact solution given in Figure (15). On the other hand, the qHAM $(n=100)$ solution has the same shape as the exact solution even for larger range of t, i.e. $0 \leq t \leq 8.5$ as shown in Figure (16). Table (1) shows the comparison between the $10^{\text {th }}$ order approximations of HAM, HPM (HAM; $h=-1$) and q-HAM at different values of n with the exact solution of (10). Therefore, based on these present results, we can say that q-HAM is more effective than HAM and HPM.

$$
U_{10} \mid x, t, n-
$$

Figure 1 (if: h - curve for the HAM (q-HAM; $n=1$) approximation solution $\theta_{10}(x, t ; 1)$ of problem (10) at different values of x and t.

Figure (2) : h-curve for the ($\mathbf{q}-\mathrm{HAM} ; \boldsymbol{n}=2$) approximation solution $U_{10}(x, t ; 2)$ of problem (10) at different values of x artad t

Figure ($3 /$: h-curve for the ($q-H A M$; $=5$) approximation solution
$U_{10}(x, t ; 5)$ of problem (10) at different values of x and t.
$U_{10}-x, t, n-$

Figure (4) : h - curve for the ($\mathbf{q}-H A M ; n=10$) approximation solution $U_{10}(x, t ; 10)$ of problem (10) at different values of x and t.

Figure (5) : h - curve for the ($\mathbf{q}-\mathrm{HAM} ; \boldsymbol{n}=\mathbf{2 0}$) approximation solution
$U_{10}(x, t ; 20)$ of problem (10) at different values of x and t. $U_{10}-x, t, n-$

Figure (6) : h - curve for the ($\mathbf{q}-\mathrm{HAM} ; n=50$) approximation solution $U_{10}(x, t, 500$ of problem (10) at different values of \boldsymbol{x} and \boldsymbol{t}.
$U_{10} \triangle, t, n\llcorner$

Figure (7) : h - curve for the ($\mathbf{q}-\mathrm{HAM} ; n=100$) approximation solution $U_{10}(x, t ; 100)$ of problem (10) at different values of x and t.

Figure (8): Comparison between U_{5}, U_{7}, U_{10} of HAM ($\mathrm{q}-\mathrm{HAM}$; $\boldsymbol{A}=1$) and exact solution of (10) at $x=1$ with $h=-0.15,0<t \leq \pi$

Figure (9): Comparison between U_{5}, U_{7}, U_{1} of HPM (HAM; $h=-1$) and exact solution of (10) at $x=1$ with $h=-0.15,0<t \leq 1$

Figure(10 : Comparison between U_{5}, U_{7}, U_{10} of ($\mathbf{q}-\mathrm{HAM} ; n=100$) and exact solution of (10) at $x=1$ with $h=-9.5,0<t \leq 8.5$

- Exact	
- $U_{10} \mathrm{HPM}$	
- - U_{10} HAM	
$-U_{10} \mathrm{qHAM} \mathrm{n} \square 2 \mathrm{~L}$	
$-U_{10} \mathrm{qHAM} \mathrm{n}^{\square} \square 5$	
	$U_{10} \mathrm{qHAM} \mathrm{n}^{\square} 10$
	$U_{10} \mathrm{qHAM}$ 口 $\square 20$
	$U_{10} \mathrm{qHAM} \mathrm{n}^{\square} 50$ L
	$U_{10} \mathrm{qHAM} \mathrm{n}^{\square} 100$

Figure (11): Comparison between U_{10} of HAM (q-HAM; $(n=1)$), U_{10} of HPM (HAM; $h=-1$) and $(\mathbf{q}-H A M ;(n=2.5,10,20,50,100)$ with exact solution of (10) at $x=1$ with ($h=-0.15,-0.285,-0.67,-1.25,-2.32,-5.5,-0.5$), respectively, $0, t \leq 8.5$.

Figure (12): The $10{ }^{\text {th }}$ order solution HPM (HAM ; $h=-1$) approximate for problem (10) at $0 \leq x \leq 10 ; 0 \leq t \leq 8.5$.

Figure (13): The $10{ }^{\text {th }}$ order solution HAM ($\mathbf{q}-\mathrm{HAM} ; n=1$) approximate for problem (10) at $0 \leq x \leq 10 ; 0 \leq t \leq 4.5$.

Figure (14): The $10^{\text {th }}$ order solution HAM $(q-H A M ; n=1)$ approximate for problem (10) at $0 \leq x \leq 10 ; 0 \leq t \leq 8.5$.

Figure (15): The exact solution for problem (10) at $0 ; x \leq 10 ; 0 \leq t \leq 8.5$.

Figure (16): The $10^{\text {th }}$ order solution q-HAM ($n=100$) approximate for problem (10) at $0 \leq x \leq 10 ; 0 \leq t \leq 8.5$.

	5 6 7	e8 4.77219 e9 4.54545 e10 2.85772 e11 1.34986 $e 12$	$\begin{gathered} \hline 86 \\ 0.5556 \\ 78 \\ 0.5157 \\ 4 \\ 3.1480 \\ 2 \\ 43.795 \\ 1 \end{gathered}$	$\begin{gathered} 0.7142 \\ 86 \\ 0.5555 \\ 7 \\ 0.4702 \\ 94 \\ 1.3203 \\ 5 \\ 17.258 \end{gathered}$	$\begin{gathered} \hline 0.7142 \\ 86 \\ 0.5555 \\ 56 \\ 0.4571 \\ 48 \\ 0.6180 \\ 94 \\ 5.4882 \\ 4 \end{gathered}$	0.7142 86 0.5555 56 0.4547 95 0.4265 92 1.5610 2	0.7142 86 0.5555 56 0.4545 57 0.3898 98 0.5631 2	$\begin{gathered} \hline 0.7142 \\ 87 \\ 0.5555 \\ 56 \\ 0.4545 \\ 46 \\ 0.3856 \\ 13 \\ 0.3961 \\ 59 \end{gathered}$	$\begin{array}{\|c\|} \hline 0.7143 \\ 62 \\ 0.5555 \\ 56 \\ 0.4545 \\ 45 \\ 0.3846 \\ 18 \\ 0.3342 \\ 31 \\ \hline \end{array}$	86 0.5555 56 0.4545 45 0.3846 15 0.3333 33
$\begin{aligned} & 7 . \\ & 5 \end{aligned}$	0	7.5	7.5	7.5	7.5	7.5	7.5		7.5	7.5
	1	5122.5	2.5126	2.5189	2.5292	2.5454	2.5694	2.5911	2.6745	2.5
	2	6.29146	6	1	4	7	1)	1.5
	3	e6	1.5000	1.5000	1.5000	1.5003	1.5010	1.5020	1.5095	1.0714
	4	3.88711	1	2	9		2	4		3
	5	e8	1.0714	1.0714	1.0714	1.0714	1.0714	1.0714	1.0715	0.8333
	6	7.15828	3	3	3		3		4	33
	7	e9	0.8335	0.8333	0.8333	0.8333	0.8333	0.8333	0.8333	0.6818
		6.81818	17	55	34	33	33	33	33	18
		e10	0.7736	0.705	0.685	0.6821	0.6818	0.6818	0.6818	0.5769
		4.28659	1			23	36	19	18	23
		e11	4.7220	. 98	. 927	0.6398	0.5848	0.5784	0.5769	0.5
		2.02478	2	2		88	47	19	27	
		e12	65,69	25.887	8.232	2.3415	0.8446	0.5942	0.5013	
			6				79	39	46	
1	0				10	10	10	10	10	10
0	1	6830	3.350	3.3585	3.3723	3.3939	3.4258	3.4548	3.5661	3.3333
		8.38861			2	7	9	6	3	3
		e6	2.0000	2.0000	2.0001	2.0004	2.0013	2.0027	2.0127	2
	4	5.18282	1		2	4	7	2	3	1.4285
	5		. 428	1.4285	1.4285	1.4285	1.4285	1.4285	1.4287	7
	6	9.544	7	7	7	7	7	7	2	1.1111
	7	e9	1.1113	1.1111	1.1111	1.1111	1.1111	1.1111	1.1111	1
		9.09091	6	4	1	1	1	1	1	0.9090
		e10	1.0314	0.9405	0.9142	0.9095	0.9091	0.9090	0.9090	91
		5.71545	8	88	96	91	14	92	91	0.7692
		e11	6.2960	2.6407	1.2361	0.8531	0.7797	0.7712	0.7692	31
		2.69971	3	34.516	9	84	96	26	36	0.6666
		e12	87.590	1	10.976	3.1220	1.1262	0.7923	0.6684	67
			1		5	4	4	19	61	

Table (1): Comparison between the 10th-order approximations of HPM, HAM and q-HAM at different values of n with the exact solution of (10).

4. CONCLUSION

An approximate solution of $\mathrm{K}(2,2)$ equation was found by using the q -homotopy analysis method ($\mathrm{q}-\mathrm{HAM}$).The results show that the convergence region of series solutions obtained by q HAM is increasing as q is decreased. The comparison of $q-H A M$ with the HAM and HPM was made. It was shown that the convergence of $q-H A M$ is faster than the convergence of HAM and HPM.

REFERENCES

[1] Abbasbandi S., Babolian E. and Ashtiani M., Numerieal solution of the generalized Zakharov equation by Homotopy analysis method, Commun. Nonlinear Sei. Numer. Simulat.,14, (2009), 4114-4121.
[2] Adomian G., "A review of the decomposition method in applied mathematics," Journal of Mathematical Analysis and Applications, vol. 135, no. 2, pp. 501-544, 1988.
[3] Alomari A. K., Noorani M.S.M. and Nazar R." The homotopy analysis method for the exact solutions of the $\mathrm{K}(2,2)$, Burgers and coupled Burgers equations ". Appl. Math. Sci.Vol. 2, pp. 1963-1977, (2008).
[4] Ayub M., Rasheed A. and Hayat T., Exact flow of a thiyd grade fluid past a porous plate using homotopy analysis method, Int. J. Eng. Sci. 41 (2003) 2091-2103.
[5] Babolian E. and Saeidian J., Analytic approximate Solution to Burgers, Fisher, Huxley equations and combined forms of these equations, Commun. Nonlinear Sci. Numer. Simulat.14, (2009), 1984-1992.
[6] El-Tawil M. A. and Huseen S.N., The q-Homotopy Analysis Method (q-HAM), International Journal of Applied mathematics and mechanics, 8 (15): 51-75, 2012.
[7] El Tawil M. A. and Huseen S.N., On Convergence of The q-Homotopy Analysis Method, Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 10, 481 - 497.
[8] Hayat T., Khan M. and Ayub M., On the explicit analytic solutions of an Oldroyd 6constant fluid, Int. J. Engng. Sci. 42 (2004) 123-135.
[9] Hayat T., Khan M., Asghar S., Homotopy analysis of MHD flows of an Oldroyd 8constant fluid, Acta Mech. 168 (2004) 213-232.
[10] Hayat T., Khan M., Asghar S., Magneto hydrodynamic flow of an Oldroyd 6-constant fluid,App1/Math. Comput. 155 (2004) 417-425.
[11] He J.H., Homotopy perturbation technique, Comp. Math. Appl. Mech. Eng., 178, (1999), 257-262.
[12] Huseen S. N. and Grace S. R. 2013, Approximate Solutions of Nonlinear Partial Differential Equations by Modified q-Homotopy Analysis Method (mq-HAM), Hindawi Publishing Corporation, Journal of Applied Mathematics, Article ID 569674, 9 pages http:// dx.doi.org/10.1155/ 2013/ 569674.
[13] Huseen S. N., Grace S. R. and El-Tawil M. A. 2013, The Optimal q-Homotopy Analysis Method (Oq-HAM), International Journal of Computers \& Technology, Vol 11, No. 8.
[14] Iyiola O. S. 2013, q-Homotopy Analysis Method and Application to Fingero-Imbibition phenomena in double phase flow through porous media, Asian Journal of Current Engineering and Maths 2: 283-286.
[15] Iyiola O. S. 2013, A Numerical Study of Ito Equation and Sawada-Kotera Equation Both of Time-Fractional Type, Advances in Mathematics: Scientific Journal 2 , no.2, 71-79.
[16] Iyiola O. S., Soh M. E. and Enyi C. D. 2013, Generalized Homotopy Analysis Method (q-HAM) For Solving Foam Drainage Equation of Time Fractional Type, Mathematics in Engineering, Science \& Aerospace (MESA), Vol. 4, Issue 4, p. 429-440.
[17] Iyiola O. S., Ojo, G. O. and Audu, J. D., A Comparison Results of Some Analytical Solutions of Model in Double Phase Flow through Porous Media, Journal of Mathematics and System Science 4 (2014) 275-284.
[18] Liao S.J., proposed Homotopy analysis technique for the solution of nonlinear problems,Ph.D Dissertation, Shanghai Jiao Tong University, 1992.
[19] Liao S.J., Comparison between the homotopy analysis method and homotopy perturbation method, Applied Mathematics and Computation 169, 2005, 1186-1194.
[20] Liao S.J., Notes on the Homotopy analysis method:Some difinitions and theorems,Commun. Nonlinear Se1. Numer. Simulat., 14, (2009), 983-997.
[21] Lyapunov A.M., General problem on stability of motion, Taylor and Francis, 1992 (English translation), 1982.
[22] Maleknejad K. and Hadizade M. A new computational method for Volterra-Fredholm integral equations, Comput. Math. Appl., 37, (1999), 1-8.
[23] Onyejek O.N. Solutions of some parabolic inverse problems by homotopy analysis method, International Journal of Applied Mathematical Research, 3(1) (2014).
[24] Rosenau P. Hyman JM. Compactons: Solitons with finite wavelength. Phys Rev Lett1993; 70:564-567.
[25] Yazwaz A.M. and El-Sayed S. M., "A new modification of the Adomian decomposition method for linear and nonlinear operators," Applied Mathematics and Computation, vol. 122, no. 3, pp. 393-405, 2001.
[26] Wu Y.Y. and Liao S.J., Solving the one-loop soliton solution of the Vakhnenko equation by means of the homotopy analysis method, Chaos Solitons and Fractals 23 (5) (2004) 1733-1740.
[27] Wu W., Liao S.J., Solvingsolitary waves with discontinuity by means of the homotopy analysis method, Chaos, Solitons and Fractals 23 (2004) 1733-1740.
[28] Yousefi S.A., Lotfi A. and Dehghan M., He's Variational iteration method for solving nonlinear mixed Volterra-Fredholm integral equations, Computer and Mathematic with applications,58, (2009), 2172-2176.

