• E-ISSN:

    2454-9584

    P-ISSN

    2454-8111

    Impact Factor 2020

    5.051

    Impact Factor 2021

    5.610

  • E-ISSN:

    2454-9584

    P-ISSN

    2454-8111

    Impact Factor 2020

    5.051

    Impact Factor 2021

    5.610

  • E-ISSN:

    2454-9584

    P-ISSN

    2454-8111

    Impact Factor 2020

    5.051

    Impact Factor 2021

    5.610

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING & SCIENCE TECHNOLOGY

International Peer Reviewed (Refereed), Open Access Research Journal
(By Aryavart International University, India)

Paper Details

Machine Learning in Healthcare: Application and Challenges

Aaruksha Dahiya

Aristotle Public Sr.Sec School, Bus Stand, Qutabgarh, Delhi, 110039

9 - 14 Vol. 9, Jan-Dec, 2023
Receiving Date: 2022-11-08;    Acceptance Date: 2023-01-05;    Publication Date: 2023-01-19
Download PDF

Abstract

Coordinating AI (ML) techniques in medical services has arisen as an unexpected strength, upsetting different parts of patient consideration, ailing the executives, and medical services activities. This research paper investigates the complex applications and the difficulties of using ML in medical services. AI finds broad application in medical services, enveloping early disease identification, customized therapy plans, drug detection, clinical image examination, and patient risk separation. It is essential in clinical decision help, upgrading analytic precision and treatment adequacy. Besides, ML-based telemedicine and remote observing arrangements have extended medical services availability, especially in remote or underserved regions. Even with its exceptional potential, testing ML in medical services. Information protection and security concerns are central as delicate patient data is handled. Information quality, interoperability issues, and moral contemplations connected with algorithm inclination and direct request watchful consideration. Management obstacles and protection from change among medical services experts add intricacy to the mixed interaction. Moral contemplations arise unmistakably as medical service suppliers progressively depend on ML-driven experiences. This paper talks about the ethical aspects encompassing patient information protection, informed consent, and the requirement for transparent and neutral algorithm. 2023 rolex replica top replica watches UK are in stock. You can possess best fake watches with less money.
Forever perfect UK fake watches for males and females.
For more detailed information about best Swiss cartier replica watches UK, you can browse this website.

Keywords: AI Techniques; medical services; Machine Learning

    References

  1. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118.
  2. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sanchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60-88.
  3. Liu, Y., Wang, W., Zhao, M., Tu, R., & Li, X. (2020). PICO-grams: A systematic evaluation framework for developing and evaluating clinical questions. Journal of Biomedical Informatics, 103, 103389.
  4. Zhao, J., Jin, X., Xiao, Y., Zheng, Y., & Lei, T. (2020). Personalized immunosuppressive drug dosing for kidney transplant patients using the integration of clinical information and omics data. Briefings in Bioinformatics, 21(6), 2169-2180.
  5. Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., ... & Zhang, M. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, 1(1), 1-10.
  6. Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future-big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), 1216-1219.
  7. Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. Jama, 319(13), 1317-1318.
  8. Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2016). Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Scientific reports, 6, 1-10.
  9. Ghassemi, M., Naumann, T., Schulam, P., Beam, A. L., Chen, I. Y., Ranganath, R., & Ghassemi, M. M. (2018). A review of challenges and opportunities in machine learning for health. AMIA Summits on Translational Science Proceedings, 2018, 191.
  10. Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L. H., Feng, M., Ghassemi, M., ... & Celi, L. A. (2016). MIMIC-III, a freely accessible critical care database. Scientific data, 3, 1-9.
  11. Char, D. S., Shah, N. H., & Magnus, D. (2019). Implementing machine learning in health care—addressing ethical challenges. New England Journal of Medicine, 378(11), 981-983.
  12. Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2017). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE journal of biomedical and health informatics, 22(5), 1589-1604.
  13. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Lungren, M. P. (2017). Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225.
  14. Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447-453.
  15. Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., & Elhadad, N. (2015). Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, 1721-1730.
  16. Goldenberg, A. J., Zhang, X., Keane, T., & Zou, J. (2017). Integrating electronic health record information improves gene expression prediction of therapeutic response. Pacific Symposium on Biocomputing, 76-87.
  17. Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2018). Deep learning for healthcare: review, opportunities and challenges. Briefings in Bioinformatics, 19(6), 1236-1246.
  18. Ravi, D., Wong, C., Lo, B., & Yang, G. Z. (2017). Deep learning for human motion analysis: Hand, head, and body. IEEE transactions on pattern analysis and machine intelligence, 40(8), 1862-1877.
  19. Obermeyer, Z., Powers, B., & Vogeli, C. (2020). Dissecting risk factors for COVID-19 transmission. Nature Medicine, 26(6), 811-812.
  20. Chen, K., Song, L., Bai, L., Zhang, L., & Chen, K. (2019). Federated learning in mobile edge networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 22(3), 2031-2063.
  21. Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., ... & Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402-2410.
  22. Janowczyk, A., & Madabhushi, A. (2016). Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. Journal of Pathology Informatics, 7, 29.
  23. Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2017). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE journal of biomedical and health informatics, 22(5), 1589-1604.
  24. Schneider, P., Walters, W. P., & Plowright, A. T. (2020). Rethinking drug design in the artificial intelligence era. Nature Reviews Drug Discovery, 19(5), 353- 364.
  25. Wasfy, J. H., Rao, S. K., Kalagara, R., Chittle, M. D., & Richardson, C. A. (2020). Telemedicine expansion during the COVID-19 pandemic and the potential for technology-driven disparities. Journal of Medical Internet Research, 22(12), e20044.
  26. Denny, J. C., & Malin, B. (2016). Protecting patient privacy when sharing patient-level data for research. Science translational medicine, 8(322), 322ra7.
  27. Norgeot, B., Quer, G., Beaulieu-Jones, B. K., Torkamani, A., & Dias, R. (2019). Minimum information about clinical artificial intelligence modeling: the MICLAIM checklist. Nature Medicine, 25(9), 1313-1317.
  28. Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447-453.
  29. Wachter, S., & Mittelstadt, B. (2019). A right to reasonable inferences: re-thinking data protection law in the age of big data and AI. Columbia Business Law Review, 2019(2), 494-571.
  30. Huckvale, K., Prieto, J. T., Tilney, M., Benghozi, P. J., & Car, J. (2018). Unaddressed privacy risks in accredited health and wellness apps: a cross-sectional systematic assessment. BMC medicine, 16(1), 1-10.
  31. J. C. Denny and B. Malin, 'Protecting patient privacy when sharing patient-level data for research,' in Science Translational Medicine, vol. 8, no. 322, p. 322ra7, 2016.
  32. B. Norgeot, G. Quer, B. K. Beaulieu-Jones, A. Torkamani, and R. Dias, 'Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist,' in Nature Medicine, vol. 25, no. 9, pp. 1313-1317, 2019.
  33. Z. Obermeyer, B. Powers, C. Vogeli, and S. Mullainathan, 'Dissecting racial bias in an algorithm used to manage the health of populations,' in Science, vol. 366, no. 6464, pp. 447-453, 2019.
Back

alexistogel toto online

bandar alexistogel

alexistogel bandar gacor

alexistogel link

alexistogel online

alexistogel bandar togel

link alternatif alexistogel

alexistogel

alexistogel

alexistogel

alexistogel daftar

alexistogel toto macau

alexistogel bandar macau

alexistogel slot

alexistogel agen slot

alexistogel

situs alexistogel

alexistogel

alexistogel slot

alexistogel

alexistogel

alexistogel

alexistogel bandar slot

alexistogel

Alexistogel Toto Macau

alexistogel

bandar alexistogel

alexistogel slot

alexistogel link alternatif

alexistogel macau

alexistogel

alexistogel toto macau

slot alexistogel

alexistogel bandar togel

alexistogel

alexistogel rtp

alexistogel

alexistogel slot

alexistogel

alexistogel

alexistogel

alexistogel terpercaya

daftar alexistogel

alexistogel online

rtp alexistogel

alexistogel slot

alexistogel gacor

link alternatif alexistogel

alexistogel login

alexistogel

alexistogel slot dana

agen togel online

bandar togel online

alexistogel rtp

alexistogel slot

alexistogel daftar

alexistogel daftar

slot online dana

bandar togel slot

togel online terpercaya

slot pragmatic gacor

link situs slot resmi

situs slot online

link daftar togel slot

bandar slot gacor hari ini

bocoran pola slot

situs slot online

bandar slot online

bandar togel online

slot online terpercaya

togel slot online

slot deposit qris

agen slot online gacor

rtp live slot online

bandar slot online

bandar slot online gacor

agen slot online

daftar bandar togel slot

bandar togel online

togel slot hari ini

link alternatif togel slot

rtp slot online gacor

slot online gacor

situs slot gacor

rtp slot gacor

slot online gacor

tips slot maxwin

togel slot gacor

prediksi togel

game slot gacor

trik slot online

prediksi togel jitu

game slot online

togel online terpercaya

daftar togel slot online

bandar togel terpercaya

slot online gacor

trik slot bonus

prediksi togel online

rtp slot online

panduan togel online

RTP LIVE

Bandar Toto Macau

Situs Slot Gacor

bandarbola855 resmi

bandarbola855 gacor

bandarbola855 slot

link bandarbola855

bandarbola855 bola slot

bandarbola855 rtp

bandarbola855 slot online

bandarbola855 link

bandarbola855 bandar

bandarbola855 slot terpercaya

bandarbola855

bandarbola855 slot

bandarbola855 terpercaya

bandarbola855 online

slot bandarbola855

bandarbola855 slot

bandarbola855 daftar

bandarbola855 link

bandarbola855

bandarbola855

bandarbola855

bandarbola855 slot

bandarbola855

bandarbola855 rtp

bandarbola855

bandarbola855

bandarbola855

iosbet

iosbet

link iosbet

slot online iosbet

iosbet link login

slot iosbet

iosbet gacor

iosbet slot

iosbet

slot iosbet

agen iosbet

bandar iosbet

iosbet

iosbet link

bandar iosbet gacor

iosbet

iosbet

iosbet

iosbet

liatogel

bandar liatogel

login liatogel

live draw hk liatogel

liatogel slot online gacor

liatogel totomacau

liatogel link

slot gacor

daftar slot online

bandar slot dana

slot ovo

slot gopay