• E-ISSN:

    2454-9584

    P-ISSN

    2454-8111

    Impact Factor 2021

    5.610

    Impact Factor 2022

    6.247

  • E-ISSN:

    2454-9584

    P-ISSN

    2454-8111

    Impact Factor 2021

    5.610

    Impact Factor 2022

    6.247

  • E-ISSN:

    2454-9584

    P-ISSN

    2454-8111

    Impact Factor 2021

    5.610

    Impact Factor 2022

    6.247

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING & SCIENCE TECHNOLOGY

International Peer Reviewed (Refereed), Open Access Research Journal
(By Aryavart International University, India)

Paper Details

Enhancing The Efficiency Of Medical Imaging Diagnosis By Leveraging The Computer Vision In Conjunction With The Deep Learning Approach

Vanshika Goel

Vishwakarma University, Pune, Maharashtra, India

29 - 36 Vol. 9, Jan-Dec, 2023
Receiving Date: 2022-11-23;    Acceptance Date: 2023-01-19;    Publication Date: 2023-02-17
Download PDF

Abstract

Typically, medical specialists examine how medical data is interpreted. Subjectivity and visual complexity limit the ability of a medical expert to comprehend images. The goal of this research is to determine whether using computer vision in medical imaging will be harmful to patients and what kind of obstacles we will have to overcome in order to use computer vision in healthcare, particularly medical imaging. This study aims to determine how well deep learning algorithms perform in disease classification based on medical imaging when compared to health-care professionals. Our approach in this study is a methodical review of the computer vision literature. The key to helping doctors maximize diagnosis accuracy in computer vision for medical imaging is the deep learning approach; it is safe and harmless to utilize to support medical imaging diagnosis.

    References

  1. Gerig, G., Kuoni, W., Kikinis, R., & Kübler, O. (1989). Medical Imaging and Computer Vision: An integrated approach for diagnosis and planning. Mustererkennung 1989, 425–432. https://doi.org/10.1007/978-3-642-75102-8_64
  2. Gao, J., Yang, Y., Lin, P., & Park, D. S. (2018). Computer Vision in Healthcare Applications. Journal of Healthcare Engineering, 2018, 1– 4. https://doi.org/10.1155/2018/5157020
  3. Greenspan, H., Van Ginneken, B., & Summers, R. M. (2016). Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Transactions on Medical Imaging, 35(5), 1153-1159.
  4. Chan, H., Hadjiiski, L. M., & Samala, R. K. (2020). Computer‐Aided Diagnosis in The Era of Deep Learning. Medical Physics, 47(5). doi:10.1002/mp.13764
  5. Cavallone, M., & Palumbo, R. (2020). Debunking the myth of industry 4.0 in health care: Insights from a systematic literature review. The TQM Journal.
  6. Moreno, S., Bonfante, M., Zurek, E., & San Juan, H. (2019, June). Study of medical image processing techniques applied to lung cancer. In 2019 14th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). IEEE.
  7. Gao, J., Jiang, Q., Zhou, B., & Chen, D. (2019). Convolutional Neural Networks for Computer-Aided Detection or Diagnosis in Medical Image Analysis: An Overview. Mathematical Biosciences and Engineering, 16(6), 6536-6561. doi:10.3934/mbe.2019326
  8. Mohan, G., & Subashini, M. M. (2018). MRI based medical image analysis: Survey on brain tumor grade classification. Biomedical Signal Processing and Control, 39, 139-161.
  9. Sandoval, G. A., Brown, A. D., Wodchis, W. P., & Anderson, G. M. (2019). The relationship between hospital adoption and use of high technology medical imaging and in-patient mortality and length of stay. Journal of health organization and management.
  10. Vocaturo, E., Zumpano, E., & Veltri, P. (2018, December). Image preprocessing in computer vision systems for melanoma detection. In 2018 IEEE International Conference on Bioinformatics and biomedicine (BIBM) (pp. 2117-2124). IEEE.
  11. Yan, H. (2018, July). Computer Vision Applied in Medical Technology: The Comparison of Image Classification and Object Detection on Medical Images. In 2018 International Symposium on Communication Engineering & Computer Science (CECS 2018). Atlantis Press.
  12. Seo, J., Han, S., Lee, S., & Kim, H. (2015). Computer vision techniques for construction safety and health monitoring. Advanced Engineering Informatics, 29(2), 239-251.
  13. Dong, C. Z., & Catbas, F. N. (2020). A review of computer vision– based structural health monitoring at local and global levels. Structural Health Monitoring, 1475921720935585.
  14. Bao, Y., Tang, Z., Li, H., & Zhang, Y. (2019). Computer vision and deep learning–based data anomaly detection method for structural health monitoring. Structural Health Monitoring, 18(2), 401-421.
  15. Khuc, T., & Catbas, F. N. (2018). Structural identification using computer vision–based bridge health monitoring. Journal of Structural Engineering, 144(2), 04017202.
  16. Yeung, S., Rinaldo, F., Jopling, J., Liu, B., Mehra, R., Downing, N. L., … Milstein, A. (2019). A Computer Vision System for Deep Learning- Based Detection of Patient Mobilization Activities in The ICU. Npj Digital Medicine, 2(1). doi:10.1038/s41746-019-0087-z
  17. Selvikvåg Lundervold, A., & Lundervold, A. (2018). An Overview of Deep Learning in Medical Imaging Focusing on MRI. Zeitschrift Für Medizinische Physik. doi:10.1016/j.zemedi.2018.11.002
  18. Masud, M., Sikder, N., Nahid, A., Bairagi, A. K., & Alzain, M. A. (2021). A Machine Learning Approach to Diagnosing Lung and Colon Cancer Using a Deep Learning-Based Classification Framework. Sensors, 21(3), 748. doi:10.3390/s21030748
  19. Thevenot, J., Lopez, M. B., & Hadid, A. (2018). A Survey on Computer Vision for Assistive Medical Diagnosis from Faces. IEEE Journal of Biomedical and Health Informatics, 22(5), 1497–1511. doi:10.1109/jbhi.2017.2754861
  20. Bevilacqua, V., Dimauro, G., Marino, F., Brunetti, A., Cassano, F., Di Maio, A., ... & Guarini, A. (2016, May). A novel approach to evaluate blood parameters using computer vision techniques. In 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (pp. 1-6). IEEE.
  21. Guo, S., Guan, H., Li, J., Liao, Y., Zhang, W., & Chen, S. (2020). Vaginal Secretions Epithelial Cells and Bacteria Recognition Based on Computer Vision. Mathematical Problems in Engineering, 2020.
  22. Domingues, I., Sampaio, I. L., Duarte, H., Santos, J. A., & Abreu, P. H. (2019). Computer vision in esophageal cancer: a literature review. IEEE Access, 7, 103080-103094.
  23. Lin, E. C. (2010, December). Radiation risk from medical imaging. In Mayo Clinic Proceedings (Vol. 85, No. 12, pp. 1142-1146). Elsevier.
  24. Akiyama, Y., Mikami, T., & Mikuni, N. (2020). Deep Learning-Based Approach for the Diagnosis of Moyamoya Disease. Journal of Stroke and Cerebrovascular Diseases, 29(12), 105322.
  25. Al-Bander, B., Al-Nuaimy, W., Al-Taee, M. A., & Zheng, Y. (2017). Automated glaucoma diagnosis using a deep learning approach. 2017 14th International Multi-Conference on Systems, Signals & Devices (SSD). doi:10.1109/ssd.2017.8166974
  26. Liu, C. F., Padhy, S., Ramachandran, S., Wang, V. X., Efimov, A., Bernal, A., Shi, L., Vaillant, M., Ratnanather, J. T., Faria, A. V., Caffo, B., Albert, M., & Miller, M. I. (2019). Using deep Siamese neural networks for detection of brain asymmetries associated with Alzheimer’s Disease and Mild Cognitive Impairment. Magnetic Resonance Imaging, 64, 190–199.
  27. Mesrabadi, H. A., & Faez, K. (2018). Improving early prostate cancer diagnosis by using Artificial Neural Networks and Deep Learning. 2018 4th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS). doi:10.1109/icspis.2018.8700542
  28. Nobrega, R. V. M. D., Peixoto, S. A., da Silva, S. P. P., & Filho, P. P. R. (2018). Lung Nodule Classification via Deep Transfer Learning in CT Lung Images. 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS).
  29. Racic, L., Popovic, T., cakic, S., & Sandi, S. (2021). Pneumonia Detection Using Deep Learning Based on Convolutional Neural Network. 2021 25th International Conference on Information Technology (IT).
  30. Srivastava, A., Sengupta, S., Kang, S.-J., Kant, K., Khan, M., Ali, S. A., … Brown, D. E. (2019). Deep Learning for Detecting Diseases in Gastrointestinal Biopsy Images. 2019 Systems and Information Engineering Design Symposium (SIEDS). doi:10.1109/sieds.2019.8735619
  31. Tummala, S. (2021). Deep Learning Framework using Siamese Neural Network for Diagnosis of Autism from Brain Magnetic Resonance Imaging. 2021 6th International Conference for Convergence in Technology (I2CT).
  32. Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., Cai, M., Yang, J., Li, Y., Meng, X., & Xu, B. (2021). A deep learning algorithm using CT images to screen for Coronavirus disease (COVID-19). European Radiology.
  33. Wang, J., Ding, H., Bidgoli, F. A., Zhou, B., Iribarren, C., Molloi, S., & Baldi, P. (2017). Detecting Cardiovascular Disease from Mammograms With Deep Learning. IEEE Transactions on Medical Imaging, 36(5), 1172–1181.
  34. Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C. (2020). On Instabilities of Deep Learning in Image Reconstruction and The Potential Costs of AI. Proceedings of the National Academy of Sciences, 201907377. doi:10.1073/pnas.1907377117
  35. Alizadehsani, R., Roshanzamir, M., Hussain, S., Khosravi, A., Koohestani, A., Zangooei, M. H., . . . Acharya, U. R. (2021). Handling of uncertainty in medical data using machine learning and probability theory techniques: A review of 30 years (1991–2020). Annals of Operations Research. 10.1007/s10479-021-04006-2
  36. Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2017). Deep Learning for Healthcare: Review, Opportunities and Challenges. Briefings in Bioinformatics. doi:10.1093/bib/bbx044
  37. Luo, Z., Hsieh, J. T., Balachandar, N., Yeung, S., Pusiol, G., Luxenberg, J., ... & Fei-Fei, L. (2018). Computer vision-based descriptive analytics of seniors’ daily activities for long-term health monitoring. Machine Learning for Healthcare (MLHC), 2.
Back