Smart Homes Chip Free Light Switch
Basim Abdul Kareem Farhan
Department of Computer Techniques Engineering, Imam Al-Kadhum University College (IKC), Baghdad, Iraq
Nawar Banwan Hassan
Department of Computer Techniques Engineering, Imam Al-Kadhum University College (IKC), Baghdad, Iraq
Wisam Ali Hasan
Department of Computer Techniques Engineering, Imam Al-Kadhum University College (IKC), Baghdad, Iraq
Download PDFhttp://doi.org/10.37648/ijps.v11i01.001
Abstract
Recent advancements in wireless sensor technology have surpassed the capabilities of conventional light switches, leading to the development of chipless RFID light switches (CLS). This novel CLS is designed to be passive, operate without batteries, and maintain portability while preserving the familiar tactile experience of physical buttons for controlling devices such as light bulbs.
The CLS architecture incorporates toggle switches connected to radiofrequency spiral resonators. These resonators passively communicate the switch status through activation or deactivation by manipulating the switches. To construct the CLS tag, an FR4 substrate with a thickness of 1 mm was utilized. This substrate comprised two identification resonators and two measurement resonators (MRs) for transmitting the status information.
Experimental findings demonstrated resonant frequencies of 1115 and 1220 MHz for the identification resonators, whereas the MRs exhibited 848 and 971 MHz frequencies. Successful toggling of the switches between the ON and OFF states resulted in the corresponding activation or deactivation of MRs.
Keywords: light switches; CLS; smart homes; wireless sensors; chipless
- A. Lucero, J. Mason, A. Wiethoff, B. Meerbeek, H. Pihlajaniemi, and D. Aliakseyeu, “Rethinking our interactions with light,” Interactions, vol. 23, no. 6, pp. 54–59, 2016.
- A. A.-I. S. Letters and undefined 2023, “Tactile Light Switch Using Chipless RFID,” ieeexplore.ieee.org, Accessed: Dec. 04, 2023. [Online]. Available: https://sci-hub.ren/https://ieeexplore.ieee.org/abstract/document/10209163/
- A. Almansouri, … M. O.-I. T. on, and undefined 2018, “A CMOS RF-to-DC power converter with 86% efficiency and− 19.2-dBm sensitivity,” ieeexplore.ieee.orgAS Almansouri, MH Ouda, KN SalamaIEEE Transactions on Microwave Theory and Techniques, 2018•ieeexplore.ieee.org, Accessed: Dec. 04, 2023. [Online]. Available: https://sci-hub.ren/https://ieeexplore.ieee.org/abstract/document/8252773/
- S. Olenik, H. Lee, F. G.-N. R. Materials, and undefined 2021, “The future of near-field communication-based wireless sensing,” nature.comS Olenik, HS Lee, F GüderNature Reviews Materials, 2021•nature.com, Accessed: Dec. 06, 2023. [Online]. Available: https://sci-hub.ren/https://www.nature.com/articles/s41578-021-00299-8
- H. Landaluce, L. Arjona, A. Perallos, F. Falcone, I. Angulo, and F. Muralter, “A review of IoT sensing applications and challenges using RFID and wireless sensor networks,” mdpi.comH Landaluce, L Arjona, A Perallos, F Falcone, I Angulo, F Muralter Sensors, 2020•mdpi.com, doi: 10.3390/s20092495.
- M. Ouda, M. Arsalan, … L. M.-I. T., and undefined 2013, “5.2-GHz RF power harvester in 0.18-/spl mu/m CMOS for implantable intraocular pressure monitoring,” ieeexplore.ieee.orgMH Ouda, M Arsalan, L Marnat, A Shamim, KN SalamaIEEE Transactions on Microwave Theory and Techniques, 2013•ieeexplore.ieee.org, Accessed: Dec. 06, 2023. [Online]. Available: https://scihub.ren/https://ieeexplore.ieee.org/abstract/document/6495731/
- A. S. Almansouri, J. Kosel, and K. N. Salama, “A dual-mode nested rectifier for ambient wireless powering in CMOS technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 5, pp. 1754– 1762, 2020.
- C. Herrojo, F. Paredes, J. Mata-Contreras, F. M.- Sensors, and undefined 2019, “Chipless-RFID: A review and recent developments,” mdpi.comC Herrojo, F Paredes, J Mata-Contreras, F Martín Sensors, 2019•mdpi.com, Accessed: Dec. 06, 2023. [Online]. Available: https://scihub.ren/https://www.mdpi.com/1424-8220/19/15/3385
- B. Winther-Jensen, E. M. Amin, M. Shakil Bhuiyan, N. C. Karmakar, and B. Winther-Jensen, “Development of a low cost printable chipless RFID humidity sensor,” ieeexplore.ieee.orgEM Amin, MS Bhuiyan, NC Karmakar, B Winther-Jensen IEEE sensors Journal, 2013•ieeexplore.ieee.org, vol. 14, no. 1, 2014, doi: 10.1109/JSEN.2013.2278560.
- Y. Feng, L. Xie, Q. Chen, L. Z.-I. S. Journal, and undefined 2014, “Low-cost printed chipless RFID humidity sensor tag for intelligent packaging,” ieeexplore.ieee.orgY Feng, L Xie, Q Chen, LR ZhengIEEE Sensors Journal, 2014•ieeexplore.ieee.org, Accessed: Dec. 06, 2023. [Online]. Available: https://scihub.ren/https://ieeexplore.ieee.org/abstract/document/6995967/
- S. B.-I. S. Journal and undefined 2021, “Chipless RFID sensors for wearable applications: A review,” ieeexplore.ieee.orgSK BeheraIEEE Sensors Journal, 2021•ieeexplore.ieee.org, Accessed: Dec. 06, 2023. [Online]. Available: https://sci-hub.ren/https://ieeexplore.ieee.org/abstract/document/9606752/
- S. Preradovic and N. C. Karmakar, Multiresonator-based chipless RFID: barcode of the future. Springer Science & Business Media, 2012.
- S. Dey, J. K. Saha, and N. C. Karmakar, “Smart sensing: Chipless RFID solutions for the Internet of Everything,” IEEE Microwave Magazine, vol. 16, no. 10, pp. 26–39, 2015.
- A. Marindra, G. T.-I. T. on Microwave, and undefined 2018, “Chipless RFID sensor tag for metal crack detection and characterization,” ieeexplore.ieee.orgAMJ Marindra, GY TianIEEE Transactions on Microwave Theory and Techniques, 2018•ieeexplore.ieee.org, Accessed: Dec. 06, 2023. [Online].Available:https://sci-hub.ren/https://ieeexplore.ieee.org/abstract/ document/8307772/
- K. Brinker and R. Zoughi, “Tunable chipless RFID pressure sensor utilizing additive manufacturing,” in 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2022, pp. 1– 6.
- B. A. Farhan, “Design and Implementation of an Automatic Transfer Switch for a Single Phase Power Generator,” no. 7, pp. 16–20, 2021.