• E-ISSN:

    2454-9584

    P-ISSN

    2454-8111

    Impact Factor 2024

    6.713

    Impact Factor 2023

    6.464

  • E-ISSN:

    2454-9584

    P-ISSN

    2454-8111

    Impact Factor 2024

    6.713

    Impact Factor 2023

    6.464

  • E-ISSN:

    2454-9584

    P-ISSN

    2454-8111

    Impact Factor 2024

    6.713

    Impact Factor 2023

    6.464

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING & SCIENCE TECHNOLOGY

International Peer Reviewed (Refereed), Open Access Research Journal
(By Aryavart International University, India)

Paper Details

Common Fixed Point Theorems for Four Selfmaps of a Complete S-Metric space

Upender S

Associate Professor of Mathematics, Tara Government College (Autonomous), Sangareddy -502001, India

81 - 91 Vol. 8, Issue 1, Jan-Dec, 2022
Receiving Date: 2022-07-27;    Acceptance Date: 2022-08-29;    Publication Date: 2022-09-18
Download PDF

Abstract

Suppose (X, S) is a S- metric space and P, T, I and J are selfmaps of X. If these four maps and the space X satisfy certain conditions, we shall prove that they have a unique common fixed point in this paper. As a consequence we deduce a common fixed point theorem for four selfmaps of a complete S- metric space. Further, we show that a common fixed point theorem for four selfmaps of a metric space proved by Brain Fisher ([5]) follows as a particular case of the theorem.

Keywords: S-metric space; Associated sequence; Fixed point theorem

    References

  1. Ahmad, B., Ashraf, M., & Rhoades, B. E. (2001). Fixed point theorems for expansive mappings in D-metric spaces. Indian Journal of Pure and Applied Mathematics, 30(10), 1513–1518.
  2. Dhage, B. C. (1992). Generalised metric spaces and mappings with fixed point. Bulletin of the Calcutta Mathematical Society, 84(4), 329–336.
  3. Dhage, B. C. (1999). A common fixed point principal in D-metric spaces. Bulletin of the Calcutta Mathematical Society, 91(6), 475–480.
  4. Dhage, B. C., Pathan, A. M., & Rhoades, B. E. (2000). A general existence principle for fixed point theorems in Dmetric spaces. International Journal of Mathematics and Mathematical Sciences, 23(7), 441– 448. https://doi.org/10.1155/S0161171200002682
  5. Fisher, B. (1983). Common fixed points of four mappings. Bulletin of the Institute of Mathematics, Academia Sinica, 11, 103–113
  6. Gähler, S. (1963). 2-metrische Räume und ihre topologische Struktur. Mathematische Nachrichten, 26(1-4), 115– 148. https://doi.org/10.1002/mana.19630260109
  7. Naidu, S. V. R., Rao, K. P. R., & Rao, N. S. (2004). On the topology of D-metric spaces and generalization of Dmetric spaces from metric spaces. International Journal of Mathematics and Mathematical Sciences, 2004(51), 2719– 2740. https://doi.org/10.1155/S0161171204400032
  8. Naidu, S. V. R., Rao, K. P. R., & Rao, N. S. (2005). On the concepts of balls in a D-metric space. International Journal of Mathematics and Mathematical Sciences, 2005(1), 133–141. https://doi.org/10.1155/IJMMS.2005.133
  9. Naidu, S. V. R., Rao, K. P. R., & Rao, N. S. (2005). On convergent sequences and fixed point theorems in D-metric spaces. International Journal of Mathematics and Mathematical Sciences, 2005(19), 1969– 1988. https://doi.org/10.1155/IJMMS.2005.1969
  10. Sedghi, S., Shobe, N., & Zhou, H. (2007). A common fixed point theorem in D*-metric spaces. Fixed Point Theory and Applications, 2007, Article ID 027906. https://doi.org/10.1155/2007/27906
  11. Sedghi, S., Shobe, N., & Aliouche, A. (2012). A generalization of fixed point theorem in S-metric spaces. Matematicki Vesnik, 64(3), 258–266.
Back

Disclaimer: Indexing of published papers is subject to the evaluation and acceptance criteria of the respective indexing agencies. While we strive to maintain high academic and editorial standards, International Journal of Inventions in Engineering & Science Technology does not guarantee the indexing of any published paper. Acceptance and inclusion in indexing databases are determined by the quality, originality, and relevance of the paper, and are at the sole discretion of the indexing bodies.