Common Fixed Point Theorems for Four Selfmaps of a Complete S-Metric space
Upender S
Associate Professor of Mathematics, Tara Government College (Autonomous), Sangareddy -502001, India
Download PDFAbstract
Suppose (X, S) is a S- metric space and P, T, I and J are selfmaps of X. If these four maps and the space X satisfy certain conditions, we shall prove that they have a unique common fixed point in this paper. As a consequence we deduce a common fixed point theorem for four selfmaps of a complete S- metric space. Further, we show that a common fixed point theorem for four selfmaps of a metric space proved by Brain Fisher ([5]) follows as a particular case of the theorem.
Keywords: S-metric space; Associated sequence; Fixed point theorem
- Ahmad, B., Ashraf, M., & Rhoades, B. E. (2001). Fixed point theorems for expansive mappings in D-metric spaces. Indian Journal of Pure and Applied Mathematics, 30(10), 1513–1518.
- Dhage, B. C. (1992). Generalised metric spaces and mappings with fixed point. Bulletin of the Calcutta Mathematical Society, 84(4), 329–336.
- Dhage, B. C. (1999). A common fixed point principal in D-metric spaces. Bulletin of the Calcutta Mathematical Society, 91(6), 475–480.
- Dhage, B. C., Pathan, A. M., & Rhoades, B. E. (2000). A general existence principle for fixed point theorems in Dmetric spaces. International Journal of Mathematics and Mathematical Sciences, 23(7), 441– 448. https://doi.org/10.1155/S0161171200002682
- Fisher, B. (1983). Common fixed points of four mappings. Bulletin of the Institute of Mathematics, Academia Sinica, 11, 103–113
- Gähler, S. (1963). 2-metrische Räume und ihre topologische Struktur. Mathematische Nachrichten, 26(1-4), 115– 148. https://doi.org/10.1002/mana.19630260109
- Naidu, S. V. R., Rao, K. P. R., & Rao, N. S. (2004). On the topology of D-metric spaces and generalization of Dmetric spaces from metric spaces. International Journal of Mathematics and Mathematical Sciences, 2004(51), 2719– 2740. https://doi.org/10.1155/S0161171204400032
- Naidu, S. V. R., Rao, K. P. R., & Rao, N. S. (2005). On the concepts of balls in a D-metric space. International Journal of Mathematics and Mathematical Sciences, 2005(1), 133–141. https://doi.org/10.1155/IJMMS.2005.133
- Naidu, S. V. R., Rao, K. P. R., & Rao, N. S. (2005). On convergent sequences and fixed point theorems in D-metric spaces. International Journal of Mathematics and Mathematical Sciences, 2005(19), 1969– 1988. https://doi.org/10.1155/IJMMS.2005.1969
- Sedghi, S., Shobe, N., & Zhou, H. (2007). A common fixed point theorem in D*-metric spaces. Fixed Point Theory and Applications, 2007, Article ID 027906. https://doi.org/10.1155/2007/27906
- Sedghi, S., Shobe, N., & Aliouche, A. (2012). A generalization of fixed point theorem in S-metric spaces. Matematicki Vesnik, 64(3), 258–266.