• E-ISSN:

    2454-9584

    P-ISSN

    2454-8111

    Impact Factor 2024

    6.713

    Impact Factor 2023

    6.464

  • E-ISSN:

    2454-9584

    P-ISSN

    2454-8111

    Impact Factor 2024

    6.713

    Impact Factor 2023

    6.464

  • E-ISSN:

    2454-9584

    P-ISSN

    2454-8111

    Impact Factor 2024

    6.713

    Impact Factor 2023

    6.464

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING & SCIENCE TECHNOLOGY

International Peer Reviewed (Refereed), Open Access Research Journal
(By Aryavart International University, India)

Paper Details

CONCIRCULARLY ?-RECURRENT LORENTZIAN ?-SASAKIAN MANIFOLDS ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

Dr. Krishnandan Prasad

Associate Professor Dept. of Mathematics T. P. S College, Patna

92 - 98 Vol. 1, Issue 1, Jan-Dec, 2015
Receiving Date: 2015-04-21;    Acceptance Date: 2015-06-12;    Publication Date: 2015-07-09
Download PDF

Abstract

This paper focuses on the investigation of concircularly ?-recurrent Lorentzian ?-Sasakian manifolds equipped with a semi-symmetric non-metric connection.

Keywords: Concircularly ?-symmetric manifold; concircularly ?-recurrent manifold; n-Einstein manifold.

    References

  1. T. Takahashi, Sasakian φ-symmetric spaces, Tohoku Mathematical Journal, 29 (1977), 91–113.
  2. U. C. De, On φ-recurrent Sasakian manifolds, Novi Sad Journal of Mathematics, 30 (2000), 69–77.
  3. U. C. De and A. Sarkar, On Lorentzian α-Sasakian manifolds, Extracta Mathematicae, 23 (2008), 91–103.
  4. F. Friedmann and J. A. Schouten, Über die Geometrie der halbsymmetrischen Übertragungen, Mathematische Zeitschrift, 21 (1924), 211–223.
  5. H. A. Hayden, Subspaces of a space with torsion, Proceedings of the London Mathematical Society, 34 (1932), 27–50.
  6. K. Yano, On semi-symmetric metric connections, Revista Matemática de la Universidad de Tucumán, 12 (1970), 1–15.
  7. S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S.), 29 (1975), 249–254.
  8. U. C. De, On some types of semi-symmetric non-metric connections, Indian Journal of Pure and Applied Mathematics, 23 (1992), 787–792.
  9. A. Sharfuddin and S. I. Hussain, Semi-symmetric metric connections in almost contact manifolds, Tensor (N.S.), 55 (1994), 82–88.
  10. S. C. Rastogi, On curvature tensors of semi-symmetric connections, Indian Journal of Mathematics, 35 (1993), 45–54.
  11. R. S. Mishra and S. N. Pandey, Semi-symmetric metric connections and curvature tensors, Indian Journal of Pure and Applied Mathematics, 20 (1989), 345–357.
  12. G. Bagewadi, On quarter-symmetric metric connections, Tensor (N.S.), 46 (1987), 167– 170.
  13. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser, Boston, 2002.
  14. S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure, Tohoku Mathematical Journal, 12 (1960), 459–476.
  15. M. Matsumoto, Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Saikawa, Otsu, 1986.
Back

Disclaimer: Indexing of published papers is subject to the evaluation and acceptance criteria of the respective indexing agencies. While we strive to maintain high academic and editorial standards, International Journal of Inventions in Engineering & Science Technology does not guarantee the indexing of any published paper. Acceptance and inclusion in indexing databases are determined by the quality, originality, and relevance of the paper, and are at the sole discretion of the indexing bodies.