CONCIRCULARLY ?-RECURRENT LORENTZIAN ?-SASAKIAN MANIFOLDS ENDOWED WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION
Dr. Krishnandan Prasad
Associate Professor Dept. of Mathematics T. P. S College, Patna
Download PDFAbstract
This paper focuses on the investigation of concircularly ?-recurrent Lorentzian ?-Sasakian manifolds equipped with a semi-symmetric non-metric connection.
Keywords: Concircularly ?-symmetric manifold; concircularly ?-recurrent manifold; n-Einstein manifold.
- T. Takahashi, Sasakian φ-symmetric spaces, Tohoku Mathematical Journal, 29 (1977), 91–113.
- U. C. De, On φ-recurrent Sasakian manifolds, Novi Sad Journal of Mathematics, 30 (2000), 69–77.
- U. C. De and A. Sarkar, On Lorentzian α-Sasakian manifolds, Extracta Mathematicae, 23 (2008), 91–103.
- F. Friedmann and J. A. Schouten, Über die Geometrie der halbsymmetrischen Übertragungen, Mathematische Zeitschrift, 21 (1924), 211–223.
- H. A. Hayden, Subspaces of a space with torsion, Proceedings of the London Mathematical Society, 34 (1932), 27–50.
- K. Yano, On semi-symmetric metric connections, Revista Matemática de la Universidad de Tucumán, 12 (1970), 1–15.
- S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S.), 29 (1975), 249–254.
- U. C. De, On some types of semi-symmetric non-metric connections, Indian Journal of Pure and Applied Mathematics, 23 (1992), 787–792.
- A. Sharfuddin and S. I. Hussain, Semi-symmetric metric connections in almost contact manifolds, Tensor (N.S.), 55 (1994), 82–88.
- S. C. Rastogi, On curvature tensors of semi-symmetric connections, Indian Journal of Mathematics, 35 (1993), 45–54.
- R. S. Mishra and S. N. Pandey, Semi-symmetric metric connections and curvature tensors, Indian Journal of Pure and Applied Mathematics, 20 (1989), 345–357.
- G. Bagewadi, On quarter-symmetric metric connections, Tensor (N.S.), 46 (1987), 167– 170.
- D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser, Boston, 2002.
- S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure, Tohoku Mathematical Journal, 12 (1960), 459–476.
- M. Matsumoto, Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Saikawa, Otsu, 1986.