• E-ISSN:

    2454-9584

    P-ISSN

    2454-8111

    Impact Factor 2020

    5.051

    Impact Factor 2021

    5.610

  • E-ISSN:

    2454-9584

    P-ISSN

    2454-8111

    Impact Factor 2020

    5.051

    Impact Factor 2021

    5.610

  • E-ISSN:

    2454-9584

    P-ISSN

    2454-8111

    Impact Factor 2020

    5.051

    Impact Factor 2021

    5.610

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING & SCIENCE TECHNOLOGY

International Peer Reviewed (Refereed), Open Access Research Journal
(By Aryavart International University, India)

Paper Details

APPLICATIONS OF CFD IN GRID GENERATION AFTER MODELING

Dr. Arun Prakash Singh

Associate Professor Department of Physics, Hindu College Moradabad

87 - 93 Vol. 3, Jan-Dec, 2017
Receiving Date: 2017-09-02;    Acceptance Date: 2017-10-13;    Publication Date: 2017-10-17
Download PDF

Abstract

Computational Fluid Dynamics (CFD) has grown from a mathematical curiosity to become an essential tool in almost every branch of fluid dynamics, from aerospace propulsion to weather prediction . CFD is commonly accepted as referring to the broad topic encompassing the numerical solution by computational methods, of the governing equations which describe fluid flow, the set of Navier-Stokes equations, continuity and any additional conservation equations, e.g.- energy or species concentrations.

    References

  1. John D. Anderson , Jr., “Computational Fluid Dynamics.”, McGraw-Hill, New York, 1995 pp- 3,23-27 , 168-211
  2. Tapan K. Sengupta, “Fundamentals of Computational Fluid Dynamics”., University Press Pvt. Ltd., pp 1-2,123-124.
  3. Computational fluid dynamics for Engineer.-by Hoffmann K.A , Edition:- Yr 1989
  4. Fluid Power Magazine -April June 2002
  5. Dale A. Anderson (1984), Computational Fluid Dynamics and Heat Transfer, Hemisphere
  6. Publishing corporation Washington, New York, London
  7. Bouainouche M. et al. Int. J. Numer. Methods Heat Fluid Flow. 1997. 7. 548–564p.
  8. Craft T.J. et al. Int. J. Heat Mass Transfer. 1993. 36. 2685–2697p
  9. Dianat M. et al. The Pennsylvania State University, University Park, 1995.
  10. Craft T.J. et al. Int. J. Heat Fluid Flow. 1996. 17. 108–115p.
  11. Neil Zuckerman. et al. Journal of Heat Transfer. 2005. 127.
  12. Chuang S.H. Int. J. Numer. Methods Fluids. 2000. 33. 475–498p
  13. Craft T.J. et al. Int. J. Heat Mass Transfer. 1993. 36. 2685–2697p.
  14. Merci B. et al. Int. J. Numer. Methods Heat Fluid Flow. 2003. 13. 110–132p.
  15. Papageorgakis G.C. et al.Numer. Heat Transfer. 1999. 35. 1–22p.
  16. Hosseinalipour S.M. et al.Numer. Heat Transfer Part A. 1995. 28. 647–666p.
  17. Mujumdar A.S. et al. Appl. Therm. Eng. 2005. 25. 31–44p.
  18. Gibson M.M. et al. Int. J. Heat Fluid Flow. 1997. 18. 80–87p.
  19. Wilcox D.C. DCW Industries. 2002.
Back